SHORT COMMUNICATIONS

A Coordination Compound between Vanadium Oxytrichloride and Triphenyl Phosphine

Kimio TARAMA, Satohiro Yoshida, Hiroyoshi Kanai and Shozo Osaka

Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto

(Received March 19, 1968)

While various kinds of coordination compounds of vanadium oxytrichloride (VOCl₈) have been reported,1) any compound between VOCl₃ and triphenyl phosphine (Ppha) has not been synthesised. The authors found the formation of this compound in the course of a study on the catalytic action of VOCl₃.2) When VOCl₃ was added to petroleum ether solution of Pph₈, red brown powders precipitated at room temperature. The elemental analysis of this precipitate after purification showed that the composition of this compound was VOC₈lPph₃ (Found: V, 11.81; Cl, 23.66; C, 49.75; H, 4.24%. Calcd: V, 11.91; Cl, 24.43; C, 49.52; H, 3.45%).

This compound melts with partial decomposition at a temperature higher than 210°C. At room temperature it is decomposed by moisture, but is stable in dry oxygen. It is soluble in tetrahydrofuran, but is insoluble in carbon tetrachloride and n-hexane.

Infrared spectrum of VOCl₃ has a sharp absorption at 1035 cm⁻¹ due to the stretching vibration of (V=O)3+3) and the center of this peak shifts to 1000 cm⁻¹ in the case of VOCl₂Pph₃ as shown in Fig. 1. This red shift reveals that an increase of electron density on vanadium ion is caused by coordination of Pph₈. This increase of electron density on vanadium ion is ascertained also by the ESR

measurement.

Vanadium oxytrichloride does not show any ESR signal, but VOCl₂Pph₃ shows an ESR spectrum with h.f.s. similar to that of (V=O)2+ in vanadium oxysulfate supported on γ -alumina⁴⁾ (Fig. 2). When triphenylphosphine was added to VOCl₈Pph₈ suspended in carbon tetrachloride at 10-25°C, oxygen was rapidly absorbed and triphenyl phosphine oxide was catalytically produced. Further kinetic studies for this oxidation reaction are in progress.

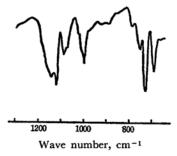


Fig. 1. Infrared spectrum of VOCl₃Pph₃ (Nujol).

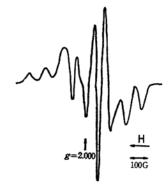


Fig. 2. ESR spectrum of VOCl₃Pph₃ at room temperature.

Proc. the 17th Disc. of Chem. of Coordination Comp.

(Hiroshima) (1967), p. 75.

3) K. Tarama, S. Teranichi and S. Yoshida, Shokubai (Catalyst), 6, 299 (1964); L. Frederickson and D. Hausen, Anal. Chem., 35, 818 (1963).

¹⁾ V. Funk, W. Weiss, M. Zeising, Z. anorg. u. allgem. Chem., 296, 36 (1958); H. L. Krauss, G. Gantz, Chem. Ber., 95, 1032 (1962); R. K. Mittal, R. C. Methrotra, Z. anorg. u. allgem. Chem., 332, 189 (1964).

2) K. Tarama, S. Yoshida, H. Kanai and S. Osaka,

⁴⁾ K. Tarama, S. Teranishi, S. Yoshida, N. Tamura and S. Ishida, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sect.), 68, 1499 (1965); Shokubai (Catalyst), 3, 187 (1961).